Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
J Dev Orig Health Dis ; 15: e7, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38660759

RESUMO

Childhood obesity represents a significant global health concern and identifying its risk factors is crucial for developing intervention programs. Many "omics" factors associated with the risk of developing obesity have been identified, including genomic, microbiomic, and epigenomic factors. Here, using a sample of 48 infants, we investigated how the methylation profiles in cord blood and placenta at birth were associated with weight outcomes (specifically, conditional weight gain, body mass index, and weight-for-length ratio) at age six months. We characterized genome-wide DNA methylation profiles using the Illumina Infinium MethylationEpic chip, and incorporated information on child and maternal health, and various environmental factors into the analysis. We used regression analysis to identify genes with methylation profiles most predictive of infant weight outcomes, finding a total of 23 relevant genes in cord blood and 10 in placenta. Notably, in cord blood, the methylation profiles of three genes (PLIN4, UBE2F, and PPP1R16B) were associated with all three weight outcomes, which are also associated with weight outcomes in an independent cohort suggesting a strong relationship with weight trajectories in the first six months after birth. Additionally, we developed a Methylation Risk Score (MRS) that could be used to identify children most at risk for developing childhood obesity. While many of the genes identified by our analysis have been associated with weight-related traits (e.g., glucose metabolism, BMI, or hip-to-waist ratio) in previous genome-wide association and variant studies, our analysis implicated several others, whose involvement in the obesity phenotype should be evaluated in future functional investigations.


Assuntos
Metilação de DNA , Obesidade Pediátrica , Humanos , Feminino , Obesidade Pediátrica/genética , Gravidez , Masculino , Recém-Nascido , Lactente , Sangue Fetal/metabolismo , Placenta/metabolismo , Índice de Massa Corporal , Epigênese Genética , Adulto
2.
medRxiv ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38260407

RESUMO

Childhood obesity represents a significant global health concern and identifying risk factors is crucial for developing intervention programs. Many 'omics' factors associated with the risk of developing obesity have been identified, including genomic, microbiomic, and epigenomic factors. Here, using a sample of 48 infants, we investigated how the methylation profiles in cord blood and placenta at birth were associated with weight outcomes (specifically, conditional weight gain, body mass index, and weight-for-length ratio) at age six months. We characterized genome-wide DNA methylation profiles using the Illumina Infinium MethylationEpic chip, and incorporated information on child and maternal health, and various environmental factors into the analysis. We used regression analysis to identify genes with methylation profiles most predictive of infant weight outcomes, finding a total of 23 relevant genes in cord blood and 10 in placenta. Notably, in cord blood, the methylation profiles of three genes (PLIN4, UBE2F, and PPP1R16B) were associated with all three weight outcomes, which are also associated with weight outcomes in an independent cohort suggesting a strong relationship with weight trajectories in the first six months after birth. Additionally, we developed a Methylation Risk Score (MRS) that could be used to identify children most at risk for developing childhood obesity. While many of the genes identified by our analysis have been associated with weight-related traits (e.g., glucose metabolism, BMI, or hip-to-waist ratio) in previous genome-wide association and variant studies, our analysis implicated several others, whose involvement in the obesity phenotype should be evaluated in future functional investigations.

3.
Genome Res ; 33(6): 907-922, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37433640

RESUMO

Approximately 13% of the human genome at certain motifs have the potential to form noncanonical (non-B) DNA structures (e.g., G-quadruplexes, cruciforms, and Z-DNA), which regulate many cellular processes but also affect the activity of polymerases and helicases. Because sequencing technologies use these enzymes, they might possess increased errors at non-B structures. To evaluate this, we analyzed error rates, read depth, and base quality of Illumina, Pacific Biosciences (PacBio) HiFi, and Oxford Nanopore Technologies (ONT) sequencing at non-B motifs. All technologies showed altered sequencing success for most non-B motif types, although this could be owing to several factors, including structure formation, biased GC content, and the presence of homopolymers. Single-nucleotide mismatch errors had low biases in HiFi and ONT for all non-B motif types but were increased for G-quadruplexes and Z-DNA in all three technologies. Deletion errors were increased for all non-B types but Z-DNA in Illumina and HiFi, as well as only for G-quadruplexes in ONT. Insertion errors for non-B motifs were highly, moderately, and slightly elevated in Illumina, HiFi, and ONT, respectively. Additionally, we developed a probabilistic approach to determine the number of false positives at non-B motifs depending on sample size and variant frequency, and applied it to publicly available data sets (1000 Genomes, Simons Genome Diversity Project, and gnomAD). We conclude that elevated sequencing errors at non-B DNA motifs should be considered in low-read-depth studies (single-cell, ancient DNA, and pooled-sample population sequencing) and in scoring rare variants. Combining technologies should maximize sequencing accuracy in future studies of non-B DNA.


Assuntos
DNA Forma Z , Nanoporos , Humanos , Motivos de Nucleotídeos , Análise de Sequência de DNA , DNA/genética , Composição de Bases , Sequenciamento de Nucleotídeos em Larga Escala
5.
Econom Stat ; 25: 66-86, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36620476

RESUMO

Obesity is a highly heritable condition that affects increasing numbers of adults and, concerningly, of children. However, only a small fraction of its heritability has been attributed to specific genetic variants. These variants are traditionally ascertained from genome-wide association studies (GWAS), which utilize samples with tens or hundreds of thousands of individuals for whom a single summary measurement (e.g., BMI) is collected. An alternative approach is to focus on a smaller, more deeply characterized sample in conjunction with advanced statistical models that leverage longitudinal phenotypes. Novel functional data analysis (FDA) techniques are used to capitalize on longitudinal growth information from a cohort of children between birth and three years of age. In an ultra-high dimensional setting, hundreds of thousands of single nucleotide polymorphisms (SNPs) are screened, and selected SNPs are used to construct two polygenic risk scores (PRS) for childhood obesity using a weighting approach that incorporates the dynamic and joint nature of SNP effects. These scores are significantly higher in children with (vs. without) rapid infant weight gain-a predictor of obesity later in life. Using two independent cohorts, it is shown that the genetic variants identified in very young children are also informative in older children and in adults, consistent with early childhood obesity being predictive of obesity later in life. In contrast, PRSs based on SNPs identified by adult obesity GWAS are not predictive of weight gain in the cohort of young children. This provides an example of a successful application of FDA to GWAS. This application is complemented with simulations establishing that a deeply characterized sample can be just as, if not more, effective than a comparable study with a cross-sectional response. Overall, it is demonstrated that a deep, statistically sophisticated characterization of a longitudinal phenotype can provide increased statistical power to studies with relatively small sample sizes; and shows how FDA approaches can be used as an alternative to the traditional GWAS.

6.
Sci Rep ; 12(1): 20787, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456591

RESUMO

Honey bee (Apis mellifera) colony loss is a widespread phenomenon with important economic and biological implications, whose drivers are still an open matter of investigation. We contribute to this line of research through a large-scale, multi-variable study combining multiple publicly accessible data sources. Specifically, we analyzed quarterly data covering the contiguous United States for the years 2015-2021, and combined open data on honey bee colony status and stressors, weather data, and land use. The different spatio-temporal resolutions of these data are addressed through an up-scaling approach that generates additional statistical features which capture more complex distributional characteristics and significantly improve modeling performance. Treating this expanded feature set with state-of-the-art feature selection methods, we obtained findings that, nation-wide, are in line with the current knowledge on the aggravating roles of Varroa destructor and pesticides in colony loss. Moreover, we found that extreme temperature and precipitation events, even when controlling for other factors, significantly impact colony loss. Overall, our results reveal the complexity of biotic and abiotic factors affecting managed honey bee colonies across the United States.


Assuntos
Clima Extremo , Parasitos , Praguicidas , Varroidae , Abelhas , Animais , Tempo (Meteorologia)
7.
Commun Biol ; 5(1): 1133, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289370

RESUMO

We employed a multifaceted computational strategy to identify the genetic factors contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing (WES) dataset of a cohort of 2000 Italian patients. We coupled a stratified k-fold screening, to rank variants more associated with severity, with the training of multiple supervised classifiers, to predict severity based on screened features. Feature importance analysis from tree-based models allowed us to identify 16 variants with the highest support which, together with age and gender covariates, were found to be most predictive of COVID-19 severity. When tested on a follow-up cohort, our ensemble of models predicted severity with high accuracy (ACC = 81.88%; AUCROC = 96%; MCC = 61.55%). Our model recapitulated a vast literature of emerging molecular mechanisms and genetic factors linked to COVID-19 response and extends previous landmark Genome-Wide Association Studies (GWAS). It revealed a network of interplaying genetic signatures converging on established immune system and inflammatory processes linked to viral infection response. It also identified additional processes cross-talking with immune pathways, such as GPCR signaling, which might offer additional opportunities for therapeutic intervention and patient stratification. Publicly available PheWAS datasets revealed that several variants were significantly associated with phenotypic traits such as "Respiratory or thoracic disease", supporting their link with COVID-19 severity outcome.


Assuntos
COVID-19 , Humanos , COVID-19/genética , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença , Sequenciamento do Exoma , Fenótipo
8.
J Am Stat Assoc ; 117(539): 1516-1529, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172297

RESUMO

Contemporary high-throughput experimental and surveying techniques give rise to ultrahigh-dimensional supervised problems with sparse signals; that is, a limited number of observations (n), each with a very large number of covariates (p >> n), only a small share of which is truly associated with the response. In these settings, major concerns on computational burden, algorithmic stability, and statistical accuracy call for substantially reducing the feature space by eliminating redundant covariates before the use of any sophisticated statistical analysis. Along the lines of Sure Independence Screening (Fan and Lv, 2008) and other model- and correlation-based feature screening methods, we propose a model-free procedure called Covariate Information Number - Sure Independence Screening (CIS). CIS uses a marginal utility connected to the notion of the traditional Fisher Information, possesses the sure screening property, and is applicable to any type of response (features) with continuous features (response). Simulations and an application to transcriptomic data on rats reveal the comparative strengths of CIS over some popular feature screening methods.

9.
Proc Natl Acad Sci U S A ; 119(15): e2118740119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35394879

RESUMO

Mutations in mitochondrial DNA (mtDNA) contribute to multiple diseases. However, how new mtDNA mutations arise and accumulate with age remains understudied because of the high error rates of current sequencing technologies. Duplex sequencing reduces error rates by several orders of magnitude via independently tagging and analyzing each of the two template DNA strands. Here, using duplex sequencing, we obtained high-quality mtDNA sequences for somatic tissues (liver and skeletal muscle) and single oocytes of 30 unrelated rhesus macaques, from 1 to 23 y of age. Sequencing single oocytes minimized effects of natural selection on germline mutations. In total, we identified 17,637 tissue-specific de novo mutations. Their frequency increased ∼3.5-fold in liver and ∼2.8-fold in muscle over the ∼20 y assessed. Mutation frequency in oocytes increased ∼2.5-fold until the age of 9 y, but did not increase after that, suggesting that oocytes of older animals maintain the quality of their mtDNA. We found the light-strand origin of replication (OriL) to be a hotspot for mutation accumulation with aging in liver. Indeed, the 33-nucleotide-long OriL harbored 12 variant hotspots, 10 of which likely disrupt its hairpin structure and affect replication efficiency. Moreover, in somatic tissues, protein-coding variants were subject to positive selection (potentially mitigating toxic effects of mitochondrial activity), the strength of which increased with the number of macaques harboring variants. Our work illuminates the origins and accumulation of somatic and germline mtDNA mutations with aging in primates and has implications for delayed reproduction in modern human societies.


Assuntos
Envelhecimento , Mitocôndrias , Mutação , Oócitos , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Macaca mulatta/genética , Mitocôndrias/genética , Oócitos/metabolismo
10.
Pediatr Obes ; 17(1): e12833, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34327846

RESUMO

BACKGROUND: Metabolomic analysis is commonly used to understand the biological underpinning of diseases such as obesity. However, our knowledge of gut metabolites related to weight outcomes in young children is currently limited. OBJECTIVES: To (1) explore the relationships between metabolites and child weight outcomes, (2) determine the potential effect of covariates (e.g., child's diet, maternal health/habits during pregnancy, etc.) in the relationship between metabolites and child weight outcomes, and (3) explore the relationship between selected gut metabolites and gut microbiota abundance. METHODS: Using 1 H-NMR, we quantified 30 metabolites from stool samples of 170 two-year-old children. To identify metabolites and covariates associated with children's weight outcomes (BMI [weight/height2 ], BMI z-score [BMI adjusted for age and sex], and growth index [weight/height]), we analysed the 1 H-NMR data, along with 20 covariates recorded on children and mothers, using LASSO and best subset selection regression techniques. Previously characterized microbiota community information from the same stool samples was used to determine associations between selected gut metabolites and gut microbiota. RESULTS: At age 2 years, stool butyrate concentration had a significant positive association with child BMI (p-value = 3.58 × 10-4 ), BMI z-score (p-value = 3.47 × 10-4 ), and growth index (p-value = 7.73 × 10-4 ). Covariates such as maternal smoking during pregnancy are important to consider. Butyrate concentration was positively associated with the abundance of the bacterial genus Faecalibacterium (p-value = 9.61 × 10-3 ). CONCLUSIONS: Stool butyrate concentration is positively associated with increased child weight outcomes and should be investigated further as a factor affecting childhood obesity.


Assuntos
Microbioma Gastrointestinal , Obesidade Pediátrica , Índice de Massa Corporal , Butiratos , Criança , Pré-Escolar , Fezes , Feminino , Humanos , Mães , Obesidade Pediátrica/epidemiologia , Gravidez
11.
Biometrics ; 78(4): 1592-1603, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34437713

RESUMO

Biomedical research is increasingly data rich, with studies comprising ever growing numbers of features. The larger a study, the higher the likelihood that a substantial portion of the features may be redundant and/or contain contamination (outlying values). This poses serious challenges, which are exacerbated in cases where the sample sizes are relatively small. Effective and efficient approaches to perform sparse estimation in the presence of outliers are critical for these studies, and have received considerable attention in the last decade. We contribute to this area considering high-dimensional regressions contaminated by multiple mean-shift outliers affecting both the response and the design matrix. We develop a general framework and use mixed-integer programming to simultaneously perform feature selection and outlier detection with provably optimal guarantees. We prove theoretical properties for our approach, that is, a necessary and sufficient condition for the robustly strong oracle property, where the number of features can increase exponentially with the sample size; the optimal estimation of parameters; and the breakdown point of the resulting estimates. Moreover, we provide computationally efficient procedures to tune integer constraints and warm-start the algorithm. We show the superior performance of our proposal compared to existing heuristic methods through simulations and use it to study the relationships between childhood obesity and the human microbiome.


Assuntos
Obesidade Pediátrica , Criança , Humanos , Algoritmos , Tamanho da Amostra , Probabilidade
12.
Sci Rep ; 11(1): 17054, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462450

RESUMO

We investigate patterns of COVID-19 mortality across 20 Italian regions and their association with mobility, positivity, and socio-demographic, infrastructural and environmental covariates. Notwithstanding limitations in accuracy and resolution of the data available from public sources, we pinpoint significant trends exploiting information in curves and shapes with Functional Data Analysis techniques. These depict two starkly different epidemics; an "exponential" one unfolding in Lombardia and the worst hit areas of the north, and a milder, "flat(tened)" one in the rest of the country-including Veneto, where cases appeared concurrently with Lombardia but aggressive testing was implemented early on. We find that mobility and positivity can predict COVID-19 mortality, also when controlling for relevant covariates. Among the latter, primary care appears to mitigate mortality, and contacts in hospitals, schools and workplaces to aggravate it. The techniques we describe could capture additional and potentially sharper signals if applied to richer data.


Assuntos
COVID-19/mortalidade , Epidemias , COVID-19/epidemiologia , Análise de Dados , Humanos , Itália/epidemiologia , Dinâmica Populacional
13.
Genome Res ; 31(7): 1136-1149, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34187812

RESUMO

Approximately 1% of the human genome has the ability to fold into G-quadruplexes (G4s)-noncanonical strand-specific DNA structures forming at G-rich motifs. G4s regulate several key cellular processes (e.g., transcription) and have been hypothesized to participate in others (e.g., firing of replication origins). Moreover, G4s differ in their thermostability, and this may affect their function. Yet, G4s may also hinder replication, transcription, and translation and may increase genome instability and mutation rates. Therefore, depending on their genomic location, thermostability, and functionality, G4 loci might evolve under different selective pressures, which has never been investigated. Here we conducted the first genome-wide analysis of G4 distribution, thermostability, and selection. We found an overrepresentation, high thermostability, and purifying selection for G4s within genic components in which they are expected to be functional-promoters, CpG islands, and 5' and 3' UTRs. A similar pattern was observed for G4s within replication origins, enhancers, eQTLs, and TAD boundary regions, strongly suggesting their functionality. In contrast, G4s on the nontranscribed strand of exons were underrepresented, were unstable, and evolved neutrally. In general, G4s on the nontranscribed strand of genic components had lower density and were less stable than those on the transcribed strand, suggesting that the former are avoided at the RNA level. Across the genome, purifying selection was stronger at stable G4s. Our results suggest that purifying selection preserves the sequences of functional G4s, whereas nonfunctional G4s are too costly to be tolerated in the genome. Thus, G4s are emerging as fundamental, functional genomic elements.

14.
Ethics Inf Technol ; 23(Suppl 1): 1-6, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33551673

RESUMO

The rapid dynamics of COVID-19 calls for quick and effective tracking of virus transmission chains and early detection of outbreaks, especially in the "phase 2" of the pandemic, when lockdown and other restriction measures are progressively withdrawn, in order to avoid or minimize contagion resurgence. For this purpose, contact-tracing apps are being proposed for large scale adoption by many countries. A centralized approach, where data sensed by the app are all sent to a nation-wide server, raises concerns about citizens' privacy and needlessly strong digital surveillance, thus alerting us to the need to minimize personal data collection and avoiding location tracking. We advocate the conceptual advantage of a decentralized approach, where both contact and location data are collected exclusively in individual citizens' "personal data stores", to be shared separately and selectively (e.g., with a backend system, but possibly also with other citizens), voluntarily, only when the citizen has tested positive for COVID-19, and with a privacy preserving level of granularity. This approach better protects the personal sphere of citizens and affords multiple benefits: it allows for detailed information gathering for infected people in a privacy-preserving fashion; and, in turn this enables both contact tracing, and, the early detection of outbreak hotspots on more finely-granulated geographic scale. The decentralized approach is also scalable to large populations, in that only the data of positive patients need be handled at a central level. Our recommendation is two-fold. First to extend existing decentralized architectures with a light touch, in order to manage the collection of location data locally on the device, and allow the user to share spatio-temporal aggregates-if and when they want and for specific aims-with health authorities, for instance. Second, we favour a longer-term pursuit of realizing a Personal Data Store vision, giving users the opportunity to contribute to collective good in the measure they want, enhancing self-awareness, and cultivating collective efforts for rebuilding society.

15.
Nucleic Acids Res ; 49(3): 1497-1516, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33450015

RESUMO

Approximately 13% of the human genome can fold into non-canonical (non-B) DNA structures (e.g. G-quadruplexes, Z-DNA, etc.), which have been implicated in vital cellular processes. Non-B DNA also hinders replication, increasing errors and facilitating mutagenesis, yet its contribution to genome-wide variation in mutation rates remains unexplored. Here, we conducted a comprehensive analysis of nucleotide substitution frequencies at non-B DNA loci within noncoding, non-repetitive genome regions, their ±2 kb flanking regions, and 1-Megabase windows, using human-orangutan divergence and human single-nucleotide polymorphisms. Functional data analysis at single-base resolution demonstrated that substitution frequencies are usually elevated at non-B DNA, with patterns specific to each non-B DNA type. Mirror, direct and inverted repeats have higher substitution frequencies in spacers than in repeat arms, whereas G-quadruplexes, particularly stable ones, have higher substitution frequencies in loops than in stems. Several non-B DNA types also affect substitution frequencies in their flanking regions. Finally, non-B DNA explains more variation than any other predictor in multiple regression models for diversity or divergence at 1-Megabase scale. Thus, non-B DNA substantially contributes to variation in substitution frequencies at small and large scales. Our results highlight the role of non-B DNA in germline mutagenesis with implications to evolution and genetic diseases.


Assuntos
DNA/química , Variação Genética , Genoma Humano , Animais , Loci Gênicos , Humanos , Taxa de Mutação , Polimorfismo de Nucleotídeo Único , Pongo pygmaeus
16.
J Comput Graph Stat ; 30(3): 566-577, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36406776

RESUMO

Recent advances in mathematical programming have made Mixed Integer Optimization a competitive alternative to popular regularization methods for selecting features in regression problems. The approach exhibits unquestionable foundational appeal and versatility, but also poses important challenges. Here we propose MIP-BOOST, a revision of standard Mixed Integer Programming feature selection that reduces the computational burden of tuning the critical sparsity bound parameter and improves performance in the presence of feature collinearity and of signals that vary in nature and strength. The final outcome is a more efficient and effective L 0 Feature Selection method for applications of realistic size and complexity, grounded on rigorous cross-validation tuning and exact optimization of the associated Mixed Integer Program. Computational viability and improved performance in realistic scenarios is achieved through three independent but synergistic proposals. Supplementary materials including additional results, pseudocode, and computer code are available online.

17.
PLoS Genet ; 16(8): e1008896, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32853200

RESUMO

Identifying regions of positive selection in genomic data remains a challenge in population genetics. Most current approaches rely on comparing values of summary statistics calculated in windows. We present an approach termed SURFDAWave, which translates measures of genetic diversity calculated in genomic windows to functional data. By transforming our discrete data points to be outputs of continuous functions defined over genomic space, we are able to learn the features of these functions that signify selection. This enables us to confidently identify complex modes of natural selection, including adaptive introgression. We are also able to predict important selection parameters that are responsible for shaping the inferred selection events. By applying our model to human population-genomic data, we recapitulate previously identified regions of selective sweeps, such as OCA2 in Europeans, and predict that its beneficial mutation reached a frequency of 0.02 before it swept 1,802 generations ago, a time when humans were relatively new to Europe. In addition, we identify BNC2 in Europeans as a target of adaptive introgression, and predict that it harbors a beneficial mutation that arose in an archaic human population that split from modern humans within the hypothesized modern human-Neanderthal divergence range.


Assuntos
Modelos Genéticos , Taxa de Mutação , População Branca/genética , Animais , Proteínas de Ligação a DNA/genética , Variação Genética , Humanos , Proteínas de Membrana Transportadoras , Homem de Neandertal/genética , Seleção Genética , Software
18.
Sci Rep ; 10(1): 14232, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859944

RESUMO

Scientific discovery is shaped by scientists' choices and thus by their career patterns. The increasing knowledge required to work at the frontier of science makes it harder for an individual to embark on unexplored paths. Yet collaborations can reduce learning costs-albeit at the expense of increased coordination costs. In this article, we use data on the publication histories of a very large sample of physicists to measure the effects of knowledge and social relatedness on their diversification strategies. Using bipartite networks, we compute a measure of topic similarity and a measure of social proximity. We find that scientists' strategies are not random, and that they are significantly affected by both. Knowledge relatedness across topics explains [Formula: see text] of logistic regression deviances and social relatedness as much as [Formula: see text], suggesting that science is an eminently social enterprise: when scientists move out of their core specialization, they do so through collaborations. Interestingly, we also find a significant negative interaction between knowledge and social relatedness, suggesting that the farther scientists move from their specialization, the more they rely on collaborations. Our results provide a starting point for broader quantitative analyses of scientific diversification strategies, which could also be extended to the domain of technological innovation-offering insights from a comparative and policy perspective.

19.
Mol Biol Evol ; 37(12): 3576-3600, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-32722770

RESUMO

Long INterspersed Elements-1 (L1s) constitute >17% of the human genome and still actively transpose in it. Characterizing L1 transposition across the genome is critical for understanding genome evolution and somatic mutations. However, to date, L1 insertion and fixation patterns have not been studied comprehensively. To fill this gap, we investigated three genome-wide data sets of L1s that integrated at different evolutionary times: 17,037 de novo L1s (from an L1 insertion cell-line experiment conducted in-house), and 1,212 polymorphic and 1,205 human-specific L1s (from public databases). We characterized 49 genomic features-proxying chromatin accessibility, transcriptional activity, replication, recombination, etc.-in the ±50 kb flanks of these elements. These features were contrasted between the three L1 data sets and L1-free regions using state-of-the-art Functional Data Analysis statistical methods, which treat high-resolution data as mathematical functions. Our results indicate that de novo, polymorphic, and human-specific L1s are surrounded by different genomic features acting at specific locations and scales. This led to an integrative model of L1 transposition, according to which L1s preferentially integrate into open-chromatin regions enriched in non-B DNA motifs, whereas they are fixed in regions largely free of purifying selection-depleted of genes and noncoding most conserved elements. Intriguingly, our results suggest that L1 insertions modify local genomic landscape by extending CpG methylation and increasing mononucleotide microsatellite density. Altogether, our findings substantially facilitate understanding of L1 integration and fixation preferences, pave the way for uncovering their role in aging and cancer, and inform their use as mutagenesis tools in genetic studies.


Assuntos
Evolução Biológica , Elementos de DNA Transponíveis , Genoma Humano , Elementos Nucleotídeos Longos e Dispersos , Modelos Genéticos , Humanos , Mutagênese Insercional
20.
PLoS Biol ; 18(7): e3000745, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32667908

RESUMO

Mutations create genetic variation for other evolutionary forces to operate on and cause numerous genetic diseases. Nevertheless, how de novo mutations arise remains poorly understood. Progress in the area is hindered by the fact that error rates of conventional sequencing technologies (1 in 100 or 1,000 base pairs) are several orders of magnitude higher than de novo mutation rates (1 in 10,000,000 or 100,000,000 base pairs per generation). Moreover, previous analyses of germline de novo mutations examined pedigrees (and not germ cells) and thus were likely affected by selection. Here, we applied highly accurate duplex sequencing to detect low-frequency, de novo mutations in mitochondrial DNA (mtDNA) directly from oocytes and from somatic tissues (brain and muscle) of 36 mice from two independent pedigrees. We found mtDNA mutation frequencies 2- to 3-fold higher in 10-month-old than in 1-month-old mice, demonstrating mutation accumulation during the period of only 9 mo. Mutation frequencies and patterns differed between germline and somatic tissues and among mtDNA regions, suggestive of distinct mutagenesis mechanisms. Additionally, we discovered a more pronounced genetic drift of mitochondrial genetic variants in the germline of older versus younger mice, arguing for mtDNA turnover during oocyte meiotic arrest. Our study deciphered for the first time the intricacies of germline de novo mutagenesis using duplex sequencing directly in oocytes, which provided unprecedented resolution and minimized selection effects present in pedigree studies. Moreover, our work provides important information about the origins and accumulation of mutations with aging/maturation and has implications for delayed reproduction in modern human societies. Furthermore, the duplex sequencing method we optimized for single cells opens avenues for investigating low-frequency mutations in other studies.


Assuntos
Envelhecimento/genética , Mamíferos/genética , Mitocôndrias/genética , Mutação/genética , Oócitos/metabolismo , Especificidade de Órgãos/genética , Animais , Análise Mutacional de DNA , DNA Mitocondrial/genética , Feminino , Frequência do Gene/genética , Deriva Genética , Células Germinativas/metabolismo , Padrões de Herança/genética , Modelos Logísticos , Masculino , Camundongos , Modelos Genéticos , Taxa de Mutação , Nucleotídeos/genética , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...